Настенный холодильный агрегат КНТ-2500

Модель: RCM-2500 220V

Паспорт

Содержание

1. Применение	3
2. Технические характеристики	5
3. Монтаж	9
4. Ввод в эксплуатацию и управление	15
5. Техническая информация	19
6. Техническое обслуживание	20
7. Комплект поставки	23
8. Сведения о приемке	23
Приложение 1 - Схема газо-гидравлическая принципиальная	24
Приложение 2 - Схема электрическая	26
Приложение 3 - Гарантийный талон	28

1. Применение

Климатическая установка **RCM-2500 220V** является современной моноблочной энергосберегающей системой, разработанной в рамках реализации программы Smart оборудования в соответствии с глобальной стратегией развития электроэнергетики Smart Grid.

Установка является интеллектуальным оборудованием и позволяет обеспечить выполнение основных аспектов Smart Grid концепции:

- управление и мониторинг состояния электротехнического оборудования;
- автоматизации процессов эксплуатации и ремонта оборудования;
- максимальное использование возобновляемых источников энергии.

Климатическая установка предназначена для монтажа на объектах как с постоянно присутствующим обслуживающим персоналом, так и без него. Она имеет отдельную панель управления, оборудованную графическим дисплеем 128х64 точек, сигнальными светодиодами и кнопками управления. Конфигурирование установки, настройка параметров, анализ и изменение режимов работы, а также диагностирование неисправностей производится через WEB интерфейс встроенной системы мониторинга. В ограниченном функционале конфигурирование установки возможно с помощью использования графического дисплея и кнопок управления. Работы выполняются непосредственно на объекте силами обслуживающего персонала. Также возможно дистанционное выполнение данных работ с помощью подключения по сети ETHERNET по протоколу SNMPv2c.

Климатическая установка комплектуется шестью функциональными блоками:

- 1. Холодильный агрегат 220 VAC;
- 2. Модуль управления с цифровыми датчиками температуры;
- 3. Система фрикулинга 220 VAC комплектация F;
- 4. Система обогрева 220 VAC комплектация H;
- 5. Система подогрева картера и дренажа (зимний комплект) комплектация W;
- 6. Модуль мониторинга и индикации комплектация М.

Холодильный агрегат разработан и сконструирован для отвода выделяемого тепла из климатического телекоммуникационного шкафа с целью защиты термочувствительных устройств в теплое время года, $T_{pa6.} = -10 \div +55$ °C.

Система фрикулинга разработана и сконструирована для отвода выделяемого тепла из телекоммуникационного шкафа с целью защиты термочувствительных устройств в холодное время года и в межсезонье, $T_{pa6} = -50 \div +10$ °C.

Система обогрева разработана и сконструирована для создания необходимого температурного режима внутри телекоммуникационного шкафа с целью защиты термочувствительных устройств в морозное время года, $T_{\text{pag.}} = -50 \div +5^{\circ}\text{C}$.

Система подогрева картера и дренажной трубки разработана и сконструирована для защиты компрессора и дренажа от обмерзания в зимнее время года, $T_{pa6} = -50 \div -0$ °C.

Модуль управления климатической установкой состоит из платы управления и цифровых температурных датчиков, на основе анализа которых и происходит выбор режимов работы оборудования.

Модуль мониторинга и индикации предназначен для визуального отображения параметров климатической установки, а также организации удаленного доступа к этим параметрам.

Климатическая установка предназначена для обеспечения заданного температурного режима внутри климатических шкафов телекоммуникационных объектов в диапазоне $+20 \div +30$ °C, при наружной температуре $-50 \div +55$ °C.

Внимание: Для работы климатической установки необходимо наличие, как питания 220B VAC.

2. Технические характеристики

Наименование	Ед.изм.	Значение	
1. Холодильный агрегат			
Номинальное напряжение 50 Гц В 220 ÷ 2		220 ÷ 240 AC	
Рабочий ток кондиционера	Α	4,8	
Холодильная мощность кондиционера	Вт	2500	
Потребляемая мощность кондиционера	Вт	1100	
Тип компрессора		поршневой	
Напряжение питания	В	220 AC	
Мощность компрессора	Вт	820	
Energy Efficiency Ratio (EER)	Вт/Вт	3,01	
Хладагент		R410A	
Масса хладагента	кг	0,5	
Тип вентилятора наружного контура	1шт	крыльчаточного типа с электродвигателем	
Напряжение питания	В	220 AC	
Потребляемая мощность	Вт	не более 85	
Объемный расход	м³/час	не менее 600	
Частота вращения	об/мин	1050	
Диапазон работы холодильной машины	°C	-30+55	
Регулирование температуры хладагента конденсатора		электронное, по частоте вращения вентилятора	
Степень защиты (EN 60529)		IP21	
Количество вентиляторов испарителя внутреннего контура 220B	ШТ	2	
Тип вентилятора испарителя внутреннего контура 220B		осевой, 172х150мм	

Напряжение питания	В	220 AC	
Потребляемая мощность	Вт	100	
Объемный расход	CFM	650 (2x325)	
Частота вращения	об/мин	4700	
Регулирование температуры хладагента испарителя		электронное, по частоте вращения вентилятора	
Степень защиты (EN 60529)		IP21	
2. Модуль управления			
Модуль управления		программируемый микроконтроллер	
Напряжение питания DC	В	4455	
Количество датчиков температуры	ШТ	8	
Тип датчика температуры		цифровой	
Интерфейс подключения		RS 485	
Протокол управления контроллером		Modbus RTU	
Количество коммутируемых каналов	ШТ	до 8	
3. Система фрикулинга (комплектация F)			
Тип фрикулинга		непрямой	
Тип теплообменника		пластинчатый	
Количество вентиляторов теплообменника фрикулинга	ШТ	2	
Тип вентилятора теплообменника фрикулинга		осевой, 120х120мм	
Напряжение питания	В	220 AC	
Потребляемая мощность	Вт	64 (2x32)	
Объемный расход	CFM	не менее 360 (2x180)	
Частота вращения	об/мин	5000	
Диапазон работы вентиляторов фрикулинга	°C	-50+10	

		T		
Регулирование температуры		электронное, по частоте вращения вентилятора		
Степень защиты (EN 60529)		IP21		
4. Система обогрева (комплен	стация Н)	,		
Количество нагревательных элементов внутреннего контура	шт	4		
Тип нагревательного элемента внутреннего контура		керамический		
Напряжение питания	В	220 AC		
Потребляемая мощность	Вт	1000		
5. Система подогрева картера и дренажа (зимний	комплект) (комплектация W)		
Тип нагревательного элемента компрессора		греющий кабель		
Напряжение питания	В	220 AC		
Потребляемая мощность	Вт	35		
Тип нагревательного элемента дренажа		греющий кабель		
Напряжение питания	В	220 AC		
Потребляемая мощность	Вт	20		
Регулирование температуры		электронное		
Степень защиты (EN 60529)		IP64		
6. Модуль мониторинга и индикации (комплектац	ия М)		
Модуль управления		программируемый микроконтроллер		
Количество дополнительных внешних датчиков температуры	шт	до 2		
Количество входных сигналов типа "сухой контакт"	ШТ	1		
Интерфейс для подключения дополнительного кондиционера батарейного отсека		RS485		
Интерфейс для подключения к системе верхнего уровня		ETHERNET		
Интерфейс для подключения блоков расширения		RS485		

Протокол подключения блоков расширения МОDBUS		MODBUS
Количество выходных аварийных сигналов шт 2		2
		графический дисплей 128 x 64
Общие характеристики установки		
Габаритные размеры, Ширина х Высота х Глубина мм 5		505 x 1005 x 305
Масса, не более	КГ	55

3. Монтаж

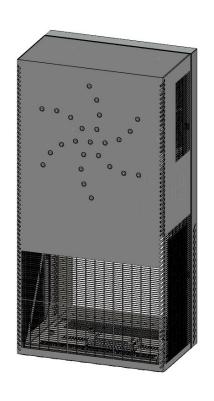
3.1. Указания по безопасности.

Монтаж должен производиться квалифицированным персоналом, имеющим навыки работы с холодильными машинами, работающими на хладагенте R410.

Персонал также должен иметь опыт работы с электроустановками и быть аттестован на право работы в электроустановках до 1000В, не менее 3 группы.

3.2. Указания по монтажу.

При монтаже необходимо обратить внимание на следующее:


- 3.2.1. Место установки климатического телекоммуникационного шкафа должно выбираться таким образом, чтобы в направлениях притока и выброса наружного воздуха из холодильного агрегата обеспечивалось достаточное пространство, не менее 1,2 метра. Пространство не должно быть захламлено и должно обеспечивать необходимый приток и отток воздуха;
 - 3.2.2. Место установки должно быть защищено от пыли и влаги;
- 3.2.3. Упаковка не должна иметь признаков повреждения. Жирные пятна на упаковке свидетельствуют об утечке хладагента из агрегата. Любое повреждение упаковки может стать причиной выхода агрегата из строя;
- 3.2.4. При монтаже климатической установки необходимо обеспечить герметизацию мест присоединения корпуса установки к монтажному окну климатического телекоммуникационного шкафа во избежание образования конденсата;
- 3.2.5. Входные и выходные отверстия агрегата не должны быть закрыты, агрегат устанавливается только в вертикальном положении. Максимальное отклонение от вертикали 2° .

3.3. Проведение монтажа.

Последовательность проведения монтажа:

- 3.3.1. Убедиться в отсутствии признаков повреждения и жирных пятен на упаковке (при наличии вышеперечисленного не распаковывать агрегат и обратится к поставщику);
 - 3.3.2. Удалить упаковку;
- 3.3.3. Разметить место крепления установки к двери телекоммуникационного шкафа и сделать разметку для отверстий (рис.1) (вырез для всасывания воздуха, должен располагаться в самой верхней части шкафа):
- -сделать вырезы (для гарантированного совпадения, вырезы следует делать больше разметки на 1 мм);
 - -открутить крепежные винты 1 кожуха установки (рис.1);
 - -снять кожух;
 - -открутить крепежные болты 2 установки (рис.1);

- -приложить установку с наружной стороны двери телекоммуникационного шкафа, а болты с внутренней стороны;
 - -закрутить болты;
 - -установить защитный кожух;
 - -закрутить крепежные винты кожуха установки.

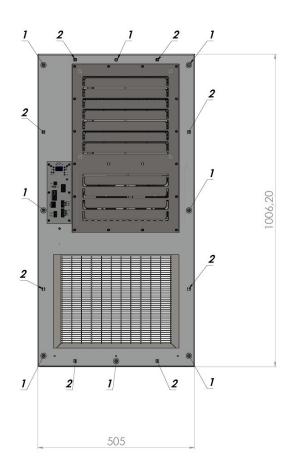


Рис. 1 Типовое размещение креплений климатической установки

3.4. Подключение к электросети

Напряжение питания и его частота должны соответствовать номинальным значениям, указанным в технических характеристиках (раздел 2).

Холодильный агрегат должен быть подключен к сети через разъединительное устройство, которое в выключенном состоянии имеет разрыв между контактами не менее 3 мм, например: автомат защиты двигателя.

Должно быть подключено заземление. Эксплуатация без подключения заземления запрещена!

Агрегат нельзя подключать к сети через дополнительное терморегулирующее устройство.

Для работы всех функций климатической установки необходимо подключить питание 220В 50Гц, к разъему "220V АС" подключить трехжильный кабель (фаза, общий провод и провод заземления) от распределительной панели 220В (рисунок 2).

Рис. 2 Разъемы подключения кабелей питания климатической установки

3.5. Подключение мониторинга.

Климатическая установка RCM-2500 220V в своем составе имеет встроенную систему мониторинга, и для работы ее в полном объеме необходимо выполнить следующие подключения:

3.5.1. к разъему "Ethernet" подключить кабель (тип кабеля FTP cat.5e) с обжатым по стандарту EIA/TIA-568A разъемом RJ45 (8P8C) - рисунок 3.

Рис. 3 Разъем для подключения кабеля к сети Ethernet

3.5.2. к разъемам "ERROR OUT 1" и "ERROR OUT 2" (рисунок 4) подключить кабель (тип кабеля - любой сигнальный, четырехжильный, например ALARM 4 x 0.22) и вывести его не колодку типа "плинт" (если телекоммуникационной системой шкафа заложен алгоритм мониторинга аварии климатического оборудования). Цепи, выведенные системой мониторинга на данные разъемы, представляют собой сигналы типа "сухой контакт" (тип - NC), изменение состояния которых сигнализирует об общей аварии отдельно первой климатической установки (аппаратного отсека шкафа) а также отдельно - второй (кондиционер отсека АКБ).

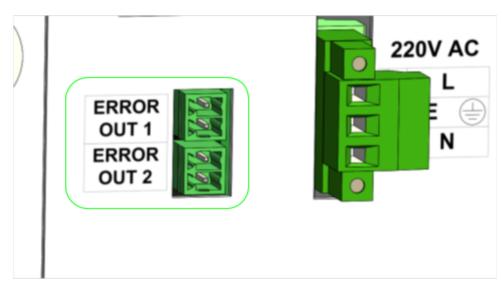


Рис. 4 Разъемы вывода аварий типа "сухой контакт"

3.5.3. к разъему DIN 1 подключить кабель (тип кабеля - любой сигнальный, двухжильный, например ALARM 2 х 0.22) от системы пожарной охраны, для реализации функции защитного отключения всех климатических установок при задымлении внутри

телекоммуникационного шкафа, для предотвращения раздувания очага воспламенения (рисунок 5).

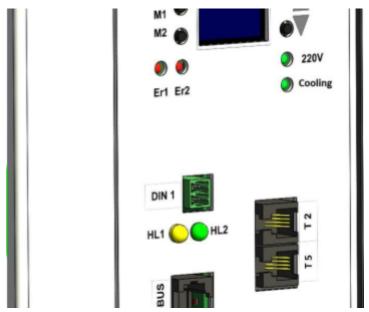


Рис. 5 Разъем DIN 1 для подключения к системе пожарной охраны

4. Ввод в эксплуатацию и управление

4.1. Ввод в эксплуатацию.

По истечению не менее 30 минут после окончания монтажа на климатическую установку может быть подано питание (за это время масло должно стечь в компрессор, чтобы обеспечить смазку и охлаждение).

Холодильный агрегат работает автоматически, т.е. после подключения питания кондиционер включается на охлаждение (или нагрев) в заводских установках:

- номинальная температура внутри шкафа 26°C;
- диапазон (гистерезис) регулирования ±2°C;

Выбор режима работы климатической установки обеспечивает управляющий контроллер, он же включает нагревательный элемент, или подключает фрикулинг, а также регулирует в случае необходимости скорость вращения вентилятора конденсатора (эффективность охлаждения) с целью поддержания оптимального давления в напорном контуре высокого давления гидросистемы и скорость вращения вентилятора испарителя, удерживая температуру конденсации хладагента в оптимальных пределах, предотвращая тем самым его обморожение.

При достижении заданной температуры внутри телекоммуникационного шкафа, режим охлаждения/нагрева переключается на режим циркуляции. ЭТОМ компрессор/нагревательный элемент выключается, а вентилятор испарителя начинает работать на пониженных оборотах, постоянно перемешивая воздух внутри шкафа, этому происходит равномерное распределение температуры. благодаря увеличение/уменьшении температуры в телекоммуникационном шкафу (выше/ниже заданной) автоматически включается режим охлаждения/нагрева. Причем функция фрикулинга обеспечивается включением вентилятора фрикулинга температура внутри шкафа станет выше температуры наружного воздуха на величину гистерезиса регулирования (параметрируется, по умолчанию на 2°C).

Отличительной особенностью фрикулинга является использование пластинчатого алюминиевого теплообменника с изолированными горячими и холодными коридорами, с поверхностными интенсификаторами типа "лунка". Т.о. в холодное время утилизация излишнего внутреннего тепла телекоммуникационного шкафа осуществляется посредством низких температур наружного воздуха. В случае если этого не достаточно и температура внутри шкафа продолжает расти, последовательно с фрикулингом, включается холодильная машина и воздух дополнительно охлаждается в контуре испарителя кондиционера.

При температуре менее -10° С охлаждение осуществляется исключительно через теплообменник фрикулинга, холодильная машина не включается - действует запрет на включение со стороны контроллера. Если существует потребность в работе холодильной машины и в условиях ниже 1° С, то компрессор и дренаж дополнительно должны быть оснащены нагревательными бандажами, нагревающими масло и не дающими замерзнуть конденсату при отрицательных температурах наружного воздуха (зимняя комплектация).

В качестве воздушного нагревателя используются высокоэффективные, керамические нагревательные элементы, заключенные в алюминиевый теплообменник.

В качестве нагревательных бандажей используется высокоэластичный греющий кабель.

Задание регулируемых параметров климатической установки производится путем программирования управляющего контроллера с помощью конфигуратора (установочной программы) через последовательный интерфейс RS 485, а также клавиш управления контроллера, на панели управления

Структурная схема работы климатической установки и алгоритм работы представлены на рисунке 7.

10 9 (1) 2.1 2.2

Теплый (горячий) внутренний воздух шкафа

Охлажденный внутренний воздух шкафа

Холодный наружный воздух

Структурная схема климатической установки:

- 1. Компрессор
- 2.1. Конденсатор
- 2.2. Вентилятор конденсатора
- 6. Испаритель
- 8. Вентиляторы испарителя
- 9. Бокс для теплообменника фрикулинга
- 10. Вентиляторы теплообменника фрикулинга
- 11. Блок нагревательных элементов

Алгоритм работы климатической установки:

- 1. Контроллер управляет (включает/выключает) компрессор кондиционера если надо охладить, или нагреватель если надо нагреть. На схеме отображен режим «охлаждение», режим «нагрев» будет наоборот.
- 2. Дополнительно контроллер может включать внешний нагреватель (если он установлен).
- 3. В зимнее время (когда температура наружного воздуха меньше чем внутреннего), охлаждение осуществляется через теплообменник фрикулинга (в случае если он стоит), путем включения вентиляторов фрикулинга (устанавливается вместе с теплообменником фрикулинга).
- 4. При отсутствии теплообменника фрикулинга, или когда его эффективность недостаточна, то включается компрессор кондиционера (если T<0°C компрессор и дренаж должны иметь подогрев зимняя комплектация).
- 5. Режим работы (производительность) вентиляторов испарителя выбирается (регулируется) контроллером в зависимости от тепловых условий внутри шкафа.
- 6. Режим работы (производительность) вентиляторов конденсатора и фрикулинга выбирается (регулируется) контроллером в зависимости от температуры наружного воздуха.

Все режимы контроллер выбирает на основе значений температурных датчиков. Коммутация не требует дополнительных элементов, у контроллера есть свои силовые коммутирующие элементы.

При наличии внешней трансмиссии контроллер может передавать параметры состояния (работы) кондиционера на «верхний» уровень транспортным протоколом Modbus RTU.

Рис. 7 Структурная схема работы климатической установки

5. Техническая информация

Холодильный агрегат (компрессорная холодильная установка) состоит из 4 основных элементов: компрессора, конденсатора, капиллярной трубки и испарителя, соединенных соответствующими трубопроводами (приложение 1).

5.1. Принцип действия

Через всасывающий трубопровод пар низкого давления подается из испарителя (6) к всасывающему патрубку компрессора (1). Компрессор откачивает пар из испарителя и сжимает его. В результате этого повышается температура и давление пара до такой величины, что он может конденсироваться под воздействием температуры окружающей среды. По нагнетательному трубопроводу горячий пар высокого давления нагнетается компрессором в конденсатор (2). Через поверхность конденсатора тепло от горячего пара хладагента передается в окружающую среду, вследствие чего фреон переходит из газообразной формы в жидкую. По жидкостному трубопроводу жидкий хладагент проходит из конденсатора в испаритель (6) через капиллярную трубку (5). После прохождения капиллярной трубки жидкий хладагент резко расширяется, что приводит к снижению температуры. В испарителе хладагент кипит, при этом поглощает тепло. Обеспечение устойчивой работы холодильного агрегата на концах температурного диапазона и в переходных режимах достигается использованием ресивера (3), обеспечивающего «компенсацию» или «утилизацию» необходимого для этого «лишнего» фреона. Для удаления остатков влаги, примесей и загрязнений хладагента установка снабжена фильтром (4). Режимы работы, задаются управляющим контроллером на основе данных температурных датчиков (12).

5.2. Удаление конденсата

Конденсационная влага, которая может образоваться на испарителе/теплообменнике фрикулинга (при высокой влажности воздуха), стекает в сборный лоток и удаляется оттуда наружу посредством дренажной трубки, которая имеет встроенный нагреватель, предотвращающий замерзание конденсата в холодное время года, и как следствие перекрывания дренажного отверстия.

- 5.3. Функция фрикулинга реализуется путем использования крестового пластинчатого теплообменника (9). Отличительной особенностью теплообменника является использование изолированных «горячих» и «холодных» коридоров, с поверхностными интенсификаторами типа «лунка». Данное решение позволяет полностью снять проблему очистки наружного воздуха, а также максимально увеличить эффективность теплообмена, контролируемой управляющим контроллером путем регулировки частоты вращения вентиляторов фрикулинга (10).
- 5.4. Функция обогрева реализована путем применения керамических нагревательных элементов (11), работа которых задается управляющим контроллером.

5.5. Функция подогрева масла компрессора (15) и конденсата в дренажной трубке (14) реализована путем применения высокоэластичного нагревательного кабеля, работа подогревателей задается управляющим контроллером.

<u>Производитель оставляет за собой право вносить изменения в конструкцию изделия, не приводящие к ухудшению его потребительских качеств.</u>

5.6. Общие положения

Температура хранения:

• Холодильные агрегаты должны храниться при температуре не выше +60°C.

Положение при транспортировке:

• Агрегаты следует транспортировать в вертикальном положении, автомобильным транспортом, имеющим пневматическую подвеску исключающую «ударные» вертикальные нагрузки.

Утилизация:

• Герметичный контур охлаждения содержит хладагент и масло. Для защиты окружающей среды их необходимо утилизировать надлежащим образом.

6. Техническое обслуживание

Контур охлаждения, представляющий собой герметичную замкнутую систему, заполненную необходимым количеством хладагента и проверенную на герметичность. Все кондиционеры подвергаются функциональному испытанию. Встроенные вентиляторы, не нуждающиеся в обслуживании, оснащены шарикоподшипниками, защищены от влаги и пыли. Срок службы составляет не менее 30000 часов.

Климатическая установка требует технического обслуживания – чистки, частота проведения которой зависит от сезона и внешних условий окружающей среды.

В зависимости от уровня загрязнения, чистка компонентов внешнего контура проводится сжатым воздухом либо мойкой с помощью специальных химических средств. Чистку должен выполнять обслуживающий персонал, имеющий соответствующую квалификацию.

Внимание: Перед проведением технического обслуживания необходимо обесточить холодильный агрегат.

Для проведения технического обслуживания необходимо:

- 6.1. Отключить автомат питания кондиционера;
- 6.2. Открутить шесть винтов (1) крепления кожуха кондиционера, не вынимая их из гнезда (рис.3) (винты имеют головку крепления под крестовую отвертку PH0).

Внимание! Не откручивать болты (2) крепления кондиционера (рис.8) (болты имеют шестигранную головку крепления).

- 6.3. Снять защитный кожух (3) кондиционера (рис.8).
- 6.4. Осмотреть элементы внешнего контура климатической установки, уделив особое внимание наличию «мокрых», «масляных» пятен, свидетельствующих о вытекании фреона. При выявлении таких пятен произвести проверку герметичности гидравлического контура и в случае необходимости произвести соответствующий ремонт.

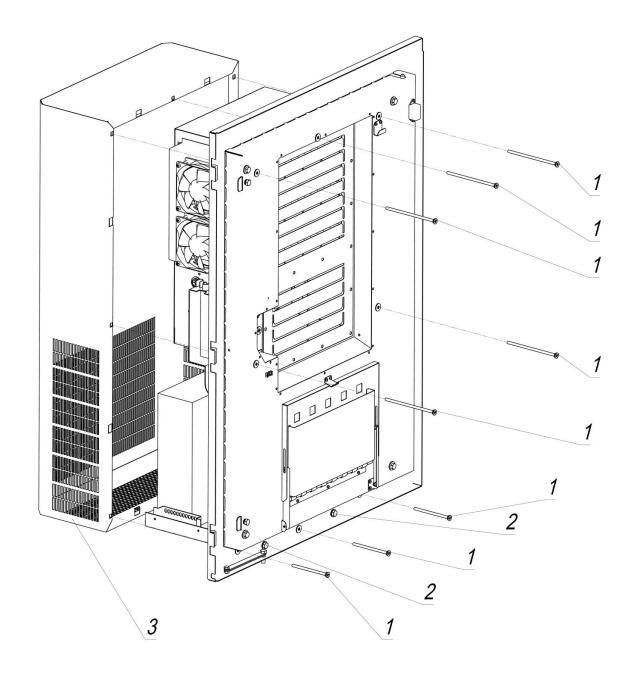


Рис. 8 Расположение элементов крепления климатической установки

6.5. Произвести чистку элементов внешнего контура климатической установки руководствуясь действиями указанными на рисунке 9.

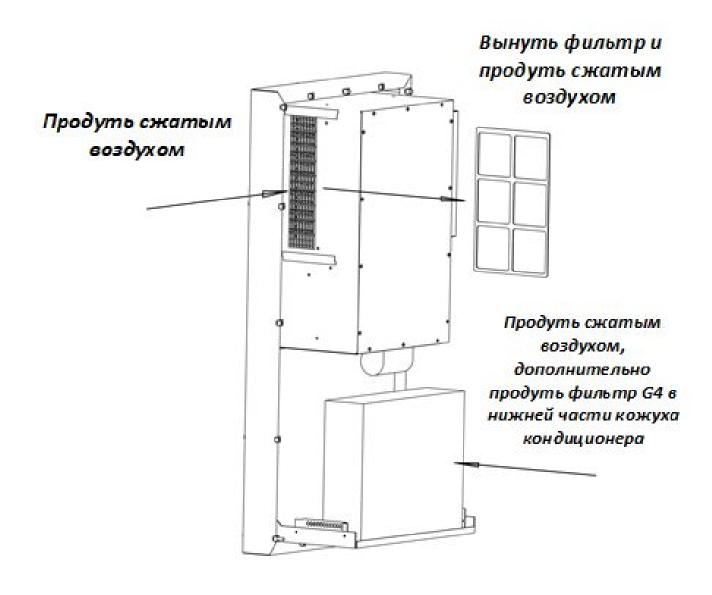
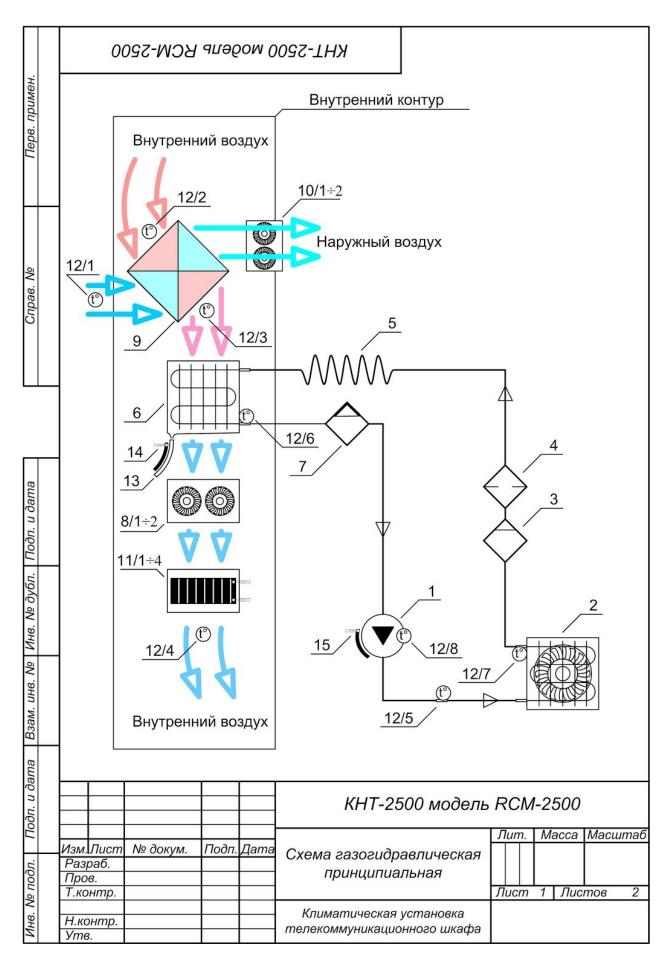
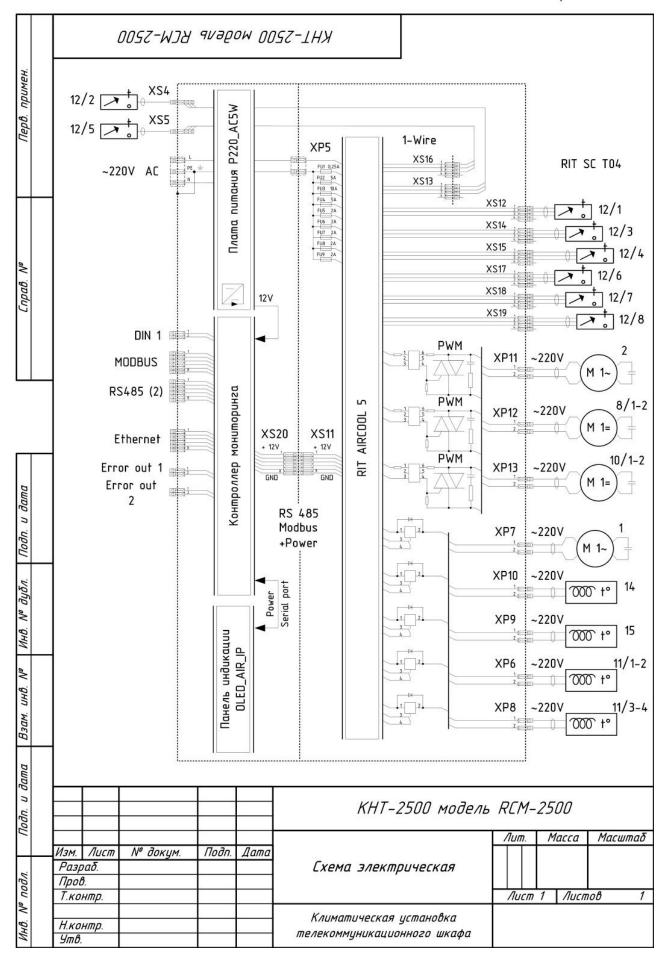
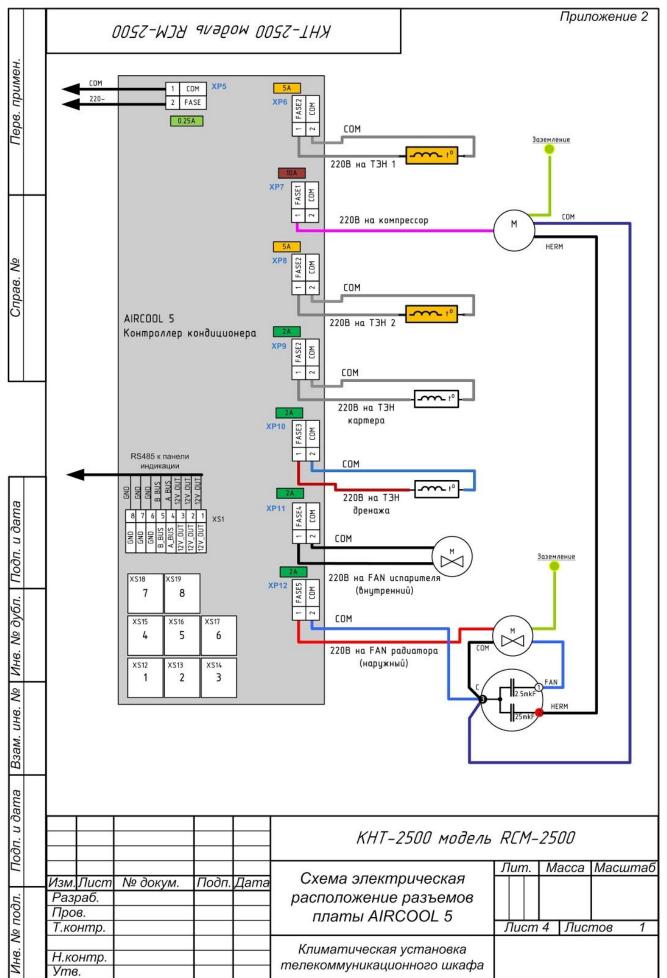


Рис. 9 Наружный вид климатической установки (без защитного кожуха)


7. Комплект поставки

Наименование	Ед. изм.	Количество
Климатическая установка в упаковке	шт.	1
Монтажный комплект		1
Руководство по монтажу и эксплуатации	шт.	1


8. Сведения о приемке


Климатическая установка соответствует технической документации и признана годной к эксплуатации.

ИСПОЛНИТЕЛЬ			
	- Дата в	ыпуска	
	Предст	гавитель ОТК Личные подпис	 и лиц, ответственных за приемку
и характеристиками	•	ектацией поставі	вки с техническими даннымі ки, указаниями по монтажу
Дата получения агре	гата: «»	20 г.	
Паспорт принял /Подг	ись/Фамилия, Имя, Отчество/	_	

мен.	Поз. обозна чение	Наименование		Примечание
Перв. примен.		<u>Комплект поставки</u>		
Пере	1	Компрессор герметичный	1	~220V
	2	Конденсатор воздушного охлаждения с вентилятором	1	~220V
\vdash	3	Ресивер	1	
	4	Фильтр медный	1	
ō	5	Капиллярная трубка	1	
Справ. №	6	Испаритель воздушного охлаждения	1	
Cul	7	Отделитель жидкости	1	
	8	Вентилятор воздушного охлаждения внутреннего контура	2	~220V
	12	Датчик температуры	8	
	13	Дренажная трубка	1	
		Система фрикулинга (комплектация F)		
Подп. и дата	9	Пластинчатый воздухо-воздушный теплообменник фрикулинга		
п. п	10	Вентилятор наружного воздушного охлаждения фрикулинга		~220V
Пос				
<u>е</u> дубп.	11	Система обогрева (комплектация Н)		
No d		Керамический нагревательный элемент	4	~220V
Инв. М				
ōN .		Система подогрева картера и дренажа (зимний комплект. комплектация W)		
. инв	14	Линейный обогреватель дренажной трубки		~220V
Взам. инв. №	15	Бандажный обогреватель корпуса компрессора		~220V
ı dan				
Подп. и дата				
77		КНТ-2500 модель RC	:M-25	00
оди.	Изм. Лист Разраб.			25
Инв. № подп.	Пров.	Схема газогидравлическая	2	
Инв.	Утв.	принципиальная		

ГАРАНТИЙНЫЙ ТАЛОН

Комплектность проверил, с техническими характеристиками, правилами эксплуатации и условиями гарантийного обслуживания ознакомлен и согласен:

«»20г.
Гарантийный талон №:
Наименование товара:
Артикул:
Организация, продавшая товар и ее адрес:
Дата продажи: «»20г.
Срок гарантии:
Все работы, связанные с гарантией производятся в сервисном центре по адресу:
При наступлении гарантийного случая все транспортные расходы несет Заказчик.
ИСПОЛНИТЕЛЬ
Дата выпуска
Представитель ОТК